mordashka
Magnetics Epcos (Siemens Matsushita Components), Germany TDK Ferroxcube Новая версия сайта
«ЛЭПКОС», ИЦ «Северо-Западная Лаборатория»

Компании «Научно-Технический Центр "СЗЛ"»  и «ЛЭПКОС»
— Генеральный представитель Epcos AG по ферритам в СНГ
— Официальный дистрибьютор и Генеральный представитель
    TDK Electronics Europe Gmbh по ферритам в России и СНГ
— Авторизованный дистрибьютор Magnetics в России, странах СНГ и Балтии
— Эксклюзивный дистрибьютор компании USM в России и СНГ
— Авторизованный дистрибьютор Temex Ceramics в России и СНГ
 
 
Статьи и публикации » Методика расчета потерь в сердечниках Magnetics »

Методика расчета потерь в сердечниках Magnetics

Данная статья позволяет ознакомиться с пошаговой методикой, позволяющей рассчитать потери в порошковых сердечниках Magnetics в заданных условиях.

При оценке результатов расчетов для всех пяти марок порошковых сердечников Magnetics можно использовать специальное программное обеспечение, которое можно скачать по ссылке на официальном сайте компании. Программа загружается в виде файла Excel и будет интересна инженерам и разработчикам, выполняющим расчеты по зависимостям, представленным в каталоге Magnetics 2017. Применение данного программного обеспечения позволяет оценить такие характеристики сердечников как: зависимость магнитной проницаемости от подмагничивания постоянным током (DC), относительные потери, зависимости проницаемости от частоты и проницаемости от температуры. В файле программы разработчики Magnetics приводят пять сравнительных таблиц для шести марок порошковых материалов: MPP, High Flux, Kool Mμ, XFlux, Kool Mμ MAX и 75 Серия.

Ниже представлено подробное описание методик, используемых при расчете потерь в порошковых сердечниках Magnetics.

Потери в сердечнике формируются в результате изменения потока магнитной индукции в материале, поскольку не существуют такие магнитные материалы, которые бы обладали идеально эффективной магнитной восприимчивостью. Относительные потери (PL) являются функцией бросков тока намагничивания (AC) (½ B=Bpk) и частоты (f).

Данная величина может быть аппроксимирована по диаграммам потерь в сердечнике (Magnetics) или подбором кривых по уравнению (1):

формула 1

где a, b, c - константы, установленные на основе аппроксимации кривых,
а величина Bpk определяется как половина от величины отклонения потока намагничивания (АС) согласно выражению (2):

формула 2

Используемые в методах расчета единицы измерения соответствуют:
(мВт/см³) - для величины PL,
Тесла (Т) - для величины Bpk
и (кГц) - для частоты f.
Задачей при расчете потерь в сердечнике является определение величины Bpk согласно параметрам, заданным разработчиками.

Метод №1 – Определение параметра Bpk по кривым намагничивания (DC) Bpk= f(H)

Магнитная индукция (B) является нелинейной функцией напряженности магнитного поля (H), которая, в свою очередь, зависит от количества витков (N), тока (I) и длины магнитного пути (l e). Значение Bpk обычно можно определить, сначала вычислив H в каждой точке экстремума, соответствующей величине переменного тока, по формуле (3):

формула 3

Величина Н выражается в единицах измерения A·T/см.

Значения B(AC) max, B(AC) min и Bpk могут быть определены по величинам H(AC) max, H(AC) min и кривой BH или по уравнению (в форме кривых намагничивания постоянным током, представленных в каталоге по порошковым сердечникам Magnetics стр. 47-51 [1]).

Пример №1 - Вклад переменного тока составляет 10% от постоянного

Для оценки потерь в сердечнике фирмы Magnetics марки KoolMμ (код заказа 77894A7, 60μ, le=6.35 см, Ae=0.654 см², AL=75 нГн/виток²) катушки индуктивности с N=20 витками, рассчитанную на работу при токе (DC) 20 А·с пульсациями переменного тока в 2А (от пика до пика) при 100 кГц.


1) Осуществляют расчет величины H, затем определяют магнитную индукцию B по кривым BH (стр. 47 каталога) или определяют по уравнению кривой (4) (стр. 51 каталога) [1]:
формула 42
2) Определяют относительные потери в сердечнике из диаграммы или вычисляют по уравнению (стр. 46 каталога Magnetics) [1]:
формула 5
3) Рассчитывают потери в сердечнике:
формула 6

Пример №2 - Вклад переменного тока составляет 40% от постоянного тока

Для оценки потерь в сердечнике для такой же катушки индуктивности (количество витков N=20) с характеристиками: I=20 А и пульсациями 8А (от пика до пика) при 100 кГц.

1) Рассчитывают H и определяют B по уравнению кривых BH (стр. 50 каталога) [1]:
формула 71
2) Определяют удельные потери в сердечнике из диаграммы или вычисляют по уравнению (стр. 46 каталога Magnetics) [1]:
формула 82
3) Рассчитывают потери в сердечнике:
формула 91
формула 101
Необходимо обратить внимание на то, что потери в сердечнике являются результатом подмагничивания переменным током. Подмагничивание постоянным током, приложенное к какому-либо сердечнику, не вызывает потерь в данных сердечниках независимо от величины его вклада.

Пример №3 - Вклад составляющей постоянного тока отсутствует, учитывается только переменный ток

При оценке потерь в сердечнике для катушки с такой же индуктивностью (количество витков N=20) и характеристиками: в данном случае I=0 и пульсациями 8А (от пика до пика) при 100 кГц.

1) Рассчитывают H и определяют B по уравнению кривых BH (стр. 50 каталога Magnetics) [1]:
формула 111
Необходимо отметить, что уравнения кривых не подходят дли отрицательных значений величины магнитной индукции В. Следует брать в расчет абсолютное значение B, затем учесть знак в результатах расчета величины Н.
2) Определяют удельные потери в сердечнике из диаграммы или вычисляют по уравнению (стр. 46 каталога Magnetics) [1]:
формула 122
3) Рассчитывают потери в сердечнике:
формула 131
Ниже приведены рабочие диапазоны для каждого из трех примеров.
Сравнивая примеры 3 и 2, необходимо обратить внимание на значительное влияние подмагничивания постоянным током на потери в сердечнике. Более низкая проницаемость приводит к меньшему значению величины Bpk, даже если пульсации тока одинаковы. Этот эффект может быть достигнут при подмагничивании постоянным тока или при выборе материала с более низкой проницаемостью.
формула 14

Метод №2 – Для малых значений ▲ аппроксимация Bpk по значениям эффективной проницаемости с подмагничиванием по постоянному току. Bpk= f(H)

Резкий наклон кривой BH определяется как абсолютная проницаемость (μ0 = 4 π x10-7) и проницаемости материала (μ), которая изменяется вдоль кривой BH). Для небольших значений переменного тока этот наклон может быть смоделирован как константа при подмагничивании переменным током с учетом μ, аппроксимирующей эффективную проницаемость при подмагничивании постоянным током (μe):
формула 151
Эффективная проницаемость с подмагничиванием постоянным током обычно выражается в % от начальной проницаемости и может быть получена из кривой подмагничивания постоянным током или выражения (стр. каталога 29-34 Magnetics) [1]:
формула 16

▲H умножается на 100, потому что le выражается в сантиметрах, а единицы Bpk - в метрах.

Повторный расчет примера 1: 20 А (DC), пульсации 2 А (от пика до пика)
формула 18
Повторный расчет примера 2: 20 А (DC), пульсации 8 А (от пика до пика)
Из примера 1:
формула 191
Повторный расчет примера 3: 0 А (DC), пульсации 8 А (от пика до пика)
Из примера 2:
формула 20

Метод №3 – Для малых значений ▲H, определяют величину Bpk по индуктивности (смещенной током). Bpk=f(L,I)

Индукцию B можно выразить в единицах измерения индуктивности, применив уравнение Фарадея и его влияние на ток катушки индуктивности:
формула 212
Где индуктивность L изменяется нелинейно с током I. Для малого вклада переменного тока AC L можно считать постоянной величиной при подмагничивании переменным током (АС). Кроме того, она аппрокисимируется индуктивностью, смещенной током (LDC).
формула 22
Также можно использовать другой способ, в частности, переписать отношения между B и L как:
формула 23
Далее делают замену (dH/dl) на (N/le) и подставляют Ae вместо A:
формула 24
Где L изменяется нелинейно с величиной H. При малых значениях переменного тока (AC) наклон кривой BH считается постоянным при подмагничивании переменным током, а L - индуктивностью, смещенной током (LDC).
формула 25
Повторный расчет примера 1:
формула 26
Повторный расчет примера 2:
формула 27
Повторный расчет примера 3:
формула 28
формула 30

Литература
1. Каталог фирмы Magnetics "Powder Cores Catalog-2017"

 
ФЕРРИТ-ХОЛДИНГ: Новости
 
23.09 22 
Компания ЛЭПКОС кардинально расширяет складскую линию поставок ферритовых сердечников производства DMEGC. Наша компания развивает сотрудничество DMEGC уже на протяжении 25 лет. Компания DMEGC является крупнейшим китайским изготовителем ферритовых сердечников и магнитных материалов и входит в тройку мировых лидеров (TDK, Ferroxcube, DMEGC) в области производства магнитомягких и магнитотвердых ферритовых материалов.



30.12 21 
Уважаемые коллеги! Обращаем Ваше внимание, что с 31.12.21 -09.01.22 склад и офис компании Лэпкос не работают.
С 10 января интернет-магазин, офис и склад продолжат работу в обычном режиме.



30.12 21 
Уважаемые коллеги! Компания Лэпкос поздравляет Вас с наступающими праздниками Новым годом и Рождеством. Желаем Вам крепкого здоровья и удачи в делах. Пусть Новый 2022 год подарит еще больше возможностей и перспектив для процветания и успеха!



10.09 21 
Уважаемые коллеги, приглашаем Вас посетить стенд нашей компании на выставке ChipEXPO 2021, которая пройдет с 14 по 16 сентября 2021 года в Москве, в Технопарке «Сколково» по адресу Большой бульвар, 42 стр.1 , стенд В38.



03.09 21 
Уважаемые коллеги! Обращаем Ваше внимание на серьезное ухудшение сроков изготовления на продукцию "ферритовые сердечники". По сердечникам производства Epcos увеличение сроков составляет до 1 года и 8 месяцев, по продукции Ferroxcube - до 46 недель. Просим учитывать данную информацию при планировании Ваших заказов!



 
 


«Северо-Западная Лаборатория» © 1999—2024

Поддержка — Кутузова Марина
Перейти к странице: